Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Infect Dis ; 225(1): 10-18, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1434406

ABSTRACT

Nosocomial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have severely affected bed capacity and patient flow. We utilized whole-genome sequencing (WGS) to identify outbreaks and focus infection control resources and intervention during the United Kingdom's second pandemic wave in late 2020. Phylogenetic analysis of WGS and epidemiological data pinpointed an initial transmission event to an admission ward, with immediate prior community infection linkage documented. High incidence of asymptomatic staff infection with genetically identical viral sequences was also observed, which may have contributed to the propagation of the outbreak. WGS allowed timely nosocomial transmission intervention measures, including admissions ward point-of-care testing and introduction of portable HEPA14 filters. Conversely, WGS excluded nosocomial transmission in 2 instances with temporospatial linkage, conserving time and resources. In summary, WGS significantly enhanced understanding of SARS-CoV-2 clusters in a hospital setting, both identifying high-risk areas and conversely validating existing control measures in other units, maintaining clinical service overall.


Subject(s)
COVID-19 , Cross Infection , Disease Outbreaks/prevention & control , Reverse Transcriptase Polymerase Chain Reaction/methods , Whole Genome Sequencing , Asymptomatic Infections , Cross Infection/epidemiology , Delivery of Health Care , Health Personnel , Humans , Personal Protective Equipment , Phylogeny , SARS-CoV-2
2.
Sci Transl Med ; 13(609): eabj0847, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1406600

ABSTRACT

Understanding the impact of prior infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the response to vaccination is a priority for responding to the coronavirus disease 2019 (COVID-19) pandemic. In particular, it is necessary to understand how prior infection plus vaccination can modulate immune responses against variants of concern. To address this, we sampled 20 individuals with and 25 individuals without confirmed previous SARS-CoV-2 infection from a large cohort of health care workers followed serologically since April 2020. All 45 individuals had received two doses of the Pfizer-BioNTech BNT162b2 vaccine with a delayed booster at 10 weeks. Absolute and neutralizing antibody titers against wild-type SARS-CoV-2 and variants were measured using enzyme immunoassays and pseudotype neutralization assays. We observed antibody reactivity against lineage A, B.1.351, and P.1 variants with increasing antigenic exposure, through either vaccination or natural infection. This improvement was further confirmed in neutralization assays using fixed dilutions of serum samples. The impact of antigenic exposure was more evident in enzyme immunoassays measuring SARS-CoV-2 spike protein­specific IgG antibody concentrations. Our data show that multiple exposures to SARS-CoV-2 spike protein in the context of a delayed booster expand the neutralizing breadth of the antibody response to neutralization-resistant SARS-CoV-2 variants. This suggests that additional vaccine boosts may be beneficial in improving immune responses against future SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , BNT162 Vaccine , COVID-19 Vaccines , Humans
3.
J Gen Virol ; 102(6)2021 06.
Article in English | MEDLINE | ID: covidwho-1270774

ABSTRACT

In the early phases of the SARS coronavirus type 2 (SARS-CoV-2) pandemic, testing focused on individuals fitting a strict case definition involving a limited set of symptoms together with an identified epidemiological risk, such as contact with an infected individual or travel to a high-risk area. To assess whether this impaired our ability to detect and control early introductions of the virus into the UK, we PCR-tested archival specimens collected on admission to a large UK teaching hospital who retrospectively were identified as having a clinical presentation compatible with COVID-19. In addition, we screened available archival specimens submitted for respiratory virus diagnosis, and dating back to early January 2020, for the presence of SARS-CoV-2 RNA. Our data provides evidence for widespread community circulation of SARS-CoV-2 in early February 2020 and into March that was undetected at the time due to restrictive case definitions informing testing policy. Genome sequence data showed that many of these early cases were infected with a distinct lineage of the virus. Sequences obtained from the first officially recorded case in Nottinghamshire - a traveller returning from Daegu, South Korea - also clustered with these early UK sequences suggesting acquisition of the virus occurred in the UK and not Daegu. Analysis of a larger sample of sequences obtained in the Nottinghamshire area revealed multiple viral introductions, mainly in late February and through March. These data highlight the importance of timely and extensive community testing to prevent future widespread transmission of the virus.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Respiratory System/virology , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Mass Screening/methods , Middle Aged , Phylogeny , RNA, Viral/genetics , Retrospective Studies , SARS-CoV-2/genetics , United Kingdom/epidemiology
4.
Mol Ther ; 29(8): 2412-2423, 2021 08 04.
Article in English | MEDLINE | ID: covidwho-1199134

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the emergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health, and there is an urgent need to develop safe and effective vaccines. Here, we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV-2. We show that our vaccine candidate, GRAd-COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies that neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, T helper (Th)1-dominated cellular response. We show here that the pre-fusion stabilized Spike antigen is superior to the wild type in inducing ACE2-interfering, SARS-CoV-2-neutralizing antibodies. To face the unprecedented need for vaccine manufacturing at a massive scale, different GRAd genome deletions were compared to select the vector backbone showing the highest productivity in stirred tank bioreactors. This preliminary dataset identified GRAd-COV2 as a potential COVID-19 vaccine candidate, supporting the translation of the GRAd-COV2 vaccine in a currently ongoing phase I clinical trial (ClinicalTrials.gov: NCT04528641).


Subject(s)
Adenoviridae/immunology , Adenovirus Vaccines/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Gorilla gorilla/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Cell Line, Tumor , Female , Genetic Vectors/immunology , Gorilla gorilla/virology , HEK293 Cells , HeLa Cells , Humans , Macaca , Male , Mice , Mice, Inbred BALB C , Middle Aged , Pandemics/prevention & control , Young Adult
5.
Biointerphases ; 15(6): 061005, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-934052

ABSTRACT

The emergence of SARS-CoV-2 highlights the global need for platform technologies to enable the rapid development of diagnostics, vaccines, treatments, and personal protective equipment (PPE). However, many current technologies require the detailed mechanistic knowledge of specific material-virion interactions before they can be employed, for example, to aid in the purification of vaccine components or in the design of a more effective PPE. Here, we show that an adaption of a polymer microarray method for screening bacterial-surface interactions allows for the screening of polymers for desirable material-virion interactions. Nonpathogenic virus-like particles including fluorophores are exposed to the arrays in an aqueous buffer as a simple model of virions carried to the surface in saliva/sputum. Competitive binding of Lassa and Rubella virus-like particles is measured to probe the relative binding properties of a selection of copolymers. This provides the first step in the development of a method for the discovery of novel materials with promise for viral binding, with the next being development of this method to assess absolute viral adsorption and assessment of the attenuation of the activity of live virus, which we propose would be part of a material scale up step carried out in high containment facilities, alongside the use of more complex media to represent biological fluids.


Subject(s)
Microarray Analysis , Polymers/chemistry , Virion/isolation & purification , Adsorption , COVID-19 , Coronavirus Infections/diagnosis , Pandemics , Pneumonia, Viral/diagnosis , Ultraviolet Rays
6.
Methods Mol Biol ; 2203: 33-40, 2020.
Article in English | MEDLINE | ID: covidwho-728130

ABSTRACT

The recent emergence of SARS, SARS-CoV2 and MERS and the discovery of novel coronaviruses in animals and birds suggest that the Coronavirus family is far more diverse than previously thought. In the last decade, several new coronaviruses have been discovered in rodents around the globe, suggesting that they are the natural reservoirs of the virus. In this chapter we describe the process of screening rodent tissue for novel coronaviruses with PCR, a method that is easily adaptable for screening a range of animals.


Subject(s)
Coronavirus Infections/virology , Coronavirus/genetics , Polymerase Chain Reaction/methods , Rodentia , Animals , Coronavirus/isolation & purification , Coronavirus Infections/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL